5,336 research outputs found

    Evolution of the rates of mass wasting and fluvial sediment transfer from the epicentral area of the 1999, Mw 7.6 earthquake

    Get PDF
    The 1999 Chichi earthquake (Mw=7.6) triggered more than 20,000 landslides in the epicentral area in central west Taiwan, and subsequent typhoons have caused an even larger number of slope failures. As a result, the suspended sediment load of the epi- central Choshui River has increased dramatically. Measurements of suspended sedi- ment at a downstream gauging station indicate that the unit sediment concentration increased about six times due to the earthquake, and decreased exponentially due to flushing by subsequent typhoons. The e-folding time scale of the seismic perturbation of sediment transfer in the Choshui River is 3-5 years. Based on this estimate of the de- cay of the erosional response to the earthquake, a mass balance can be calculated for the earthquake, including co-seismic uplift and subsidence, post-seismic relaxation, and erosion. This mass balance shows that the Chi-Chi earthquake has acted to build ridge topography in the hanging wall of the fault, but in the far field, some destruc- tion of topography has occurred. However, our estimate of seismically-driven erosion may be incomplete. A detailed analysis of landsliding in the Chenyoulan tributary of the Choshui River indicates that most co-and post seismic landslide debris remains on hillslopes within the catchment. Recent typhoons have continued to cause high rates of landsliding high in the landscape, but rates of mass wasting near the stream net- work have decreased. The full geomorphic response to the Chi-Chi earthquake may be much larger, and more protracted than indicated by river gauging data

    Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis

    Get PDF
    The transmission of diseases between livestock and wildlife can be a hindrance to effective disease control. Maintenance hosts and contact rates should be explored to further understand the transmission dynamics at the wildlife-livestock interface. Bovine tuberculosis (BTB) has been shown to have wildlife maintenance hosts and has been confirmed as present in the African buffalo (Syncerus caffer) in the Queen Elizabeth National Park (QENP) in Uganda since the 1960s. The first aim of this study was to explore the spatio-temporal spread of cattle illegally grazing within the QENP recorded by the Uganda Wildlife Authority (UWA) rangers in a wildlife crime database. Secondly, we aimed to quantify wildlife-livestock interactions and cattle movements, on the border of QENP, using a longitudinal questionnaire completed by 30 livestock owners. From this database, 426 cattle sightings were recorded within QENP in 8 years. Thirteen (3.1%) of these came within a 300 m–4 week space-time window of a buffalo herd, using the recorded GPS data. Livestock owners reported an average of 1.04 (95% CI 0.97–1.11) sightings of Uganda kob, waterbuck, buffalo or warthog per day over a 3-month period, with a rate of 0.22 (95% CI 0.20–0.25) sightings of buffalo per farmer per day. Reports placed 85.3% of the ungulate sightings and 88.0% of the buffalo sightings as further than 50 m away. Ungulate sightings were more likely to be closer to cattle at the homestead (OR 2.0, 95% CI 1.1–3.6) compared with the grazing area. Each cattle herd mixed with an average of five other cattle herds at both the communal grazing and watering points on a daily basis. Although wildlife and cattle regularly shared grazing and watering areas, they seldom came into contact close enough for aerosol transmission. Between species infection transmission is therefore likely to be by indirect or non-respiratory routes, which is suspected to be an infrequent mechanism of transmission of BTB. Occasional cross-species spillover of infection is possible, and the interaction of multiple wildlife species needs further investigation. Controlling the interface between wildlife and cattle in a situation where eradication is not being considered may have little impact on BTB disease control in cattle

    Three-dimensional instabilities of a stratified cylinder wake

    No full text
    International audienceThis paper describes experimentally, numerically and theoretically how the three-dimensional instabilities of a cylinder wake are modified by the presence of a linear density stratification. The first part is focused on the case of a cylinder with a small tilt angle between the cylinder's axis and the vertical. The classical mode A well-known for a homogeneous fluid is still present. It is more unstable for moderate stratifications but it is stabilized by a strong stratification. The second part treats the case of a moderate tilt angle. For moderate stratifications, a new unstable mode appears, mode S, characterized by undulated layers of strong density gradients and axial flow. These structures correspond to Kelvin–Helmholtz billows created by the strong shear present in the critical layer of each tilted von Kármán vortex. The last two parts deal with the case of a strongly tilted cylinder. For a weak stratification, an instability (mode RT) appears far from the cylinder, due to the overturning of the isopycnals by the von Kármán vortices. For a strong stratification, a short wavelength unstable mode (mode L) appears, even in the absence of von Kármán vortices. It is probably due to the strong shear created by the lee waves upstream of a secondary recirculation bubble. A map of the four different unstable modes is established in terms of the three parameters of the study: the Reynolds number, the Froude number (characterizing the stratification) and the tilt angle

    Graphene Ripples as a Realization of a Two-Dimensional Ising Model: A Scanning Tunneling Microscope Study

    Full text link
    Ripples in pristine freestanding graphene naturally orient themselves in an array that is alternately curved-up and curved-down; maintaining an average height of zero. Using scanning tunneling microscopy (STM) to apply a local force, the graphene sheet will reversibly rise and fall in height until the height reaches 60-70 percent of its maximum at which point a sudden, permanent jump occurs. We successfully model the ripples as a spin-half Ising magnetic system, where the height of the graphene is the spin. The permanent jump in height, controlled by the tunneling current, is found to be equivalent to an antiferromagnetic-to-ferromagnetic phase transition. The thermal load underneath the STM tip alters the local tension and is identified as the responsible mechanism for the phase transition. Four universal critical exponents are measured from our STM data, and the model provides insight into the statistical role of graphenes unusual negative thermal expansion coefficient.Comment: 12 pages, 5 figures, 1 tabl

    Generalised Factorial Moments and QCD Jets

    Full text link
    { In this paper we present a natural and comprehensive generalisation of the standard factorial moments (\clFq) analysis of a multiplicity distribution. The Generalised Factorial Moments are defined for all qq in the complex plane and, as far as the negative part of its spectrum is concerned, could be useful for the study of infrared structure of the Strong Interactions Theory of high energy interactions (LEP multiplicity distribution under the Z0{\cal Z}_0). The QCD calculation of the Generalised Factorial Moments for negative qq is performed in the double leading log accuracy and is compared to OPAL experimental data. The role played by the infrared cut-off of the model is discussed and illustrated with a Monte Carlo calculation. }Comment: 11pages 4 figures uuencode, LATEC, INLN 94/

    A numerical study of bifurcations in a barotropic shear flow

    Get PDF
    In the last few years, more and more evidence has emerged suggesting that transition to turbulence may be viewed as a succession of bifurcations to deterministic chaos. Most experimental and numerical observations have been restricted to Rayleigh-Benard convection and Taylor-Couette flow between concentric cylinders. An attempt is made to accurately describe the bifurcation sequence leading to chaos in a 2-D temporal free shear layer on the beta-plane. The beta-plane is a locally Cartesian reduction of the equations describing the dynamicss of a shallow layer of fluid on a rotating spherical planet. It is a valid model for large scale flows of interest in meteorology and oceanography

    Diode laser induced chemical vapor deposition of WSix on TiN from WF6 and SiH4

    Get PDF
    Presents a study that reported the development of a compact and inexpensive laser direct writing system for the deposition of tungsten and tungsten silicides using a 1 W diode laser array emitting at 796 nm. Reason for the difficulty to introduce laser processing in a manufacturing environment; Problems related to the use of diode lasers; Characteristics of the lines obtained in both static and dynamic reactors

    Interpretation of Light-Quenching Factor Measurements

    Full text link
    We observe that the pattern of the quenching factors for scintillation light from various ions, recently studied in CaWO4CaWO_4 in connection with dark matter detectors, can be understood as a saturation phenomenon in which the light output is simply proportional to track length, independent of the ion and its energy. This observation is in accord with the high dE/dx limit of Birks' law. It suggests a simple model for the intrinsic resolution of light detectors for low energy ions, which we briefly discuss.Comment: Seven pages, seven figures, some with colo
    • …
    corecore